Comparison of Local and Non-Local Methods in Covariance Matrix Estimation by Using Multi-baseline SAR Interferometry and Height Extraction for Principal Components with Maximum Likelihood Approach
نویسندگان
چکیده مقاله:
By today, the technology of synthetic aperture radar (SAR) interferometry (InSAR) has been largely exploited in digital elevation model (DEM) generation and deformation mapping. Conventional InSAR technique exploits two SAR images acquired from slightly different angles, in which the information of elevation and deformation can be captured through processing of the phase difference of the images called interferometric phase. Depart from undeniable efficiency of interferometric SAR processing technique (InSAR), some main issues such as phase unwrapping ambiguity may limit its applications and its accuracy in height mapping. However, in the frame of multi-baseline interferometry and by the availability of more than one interferogram of the same region these problems can be overcome. Multi-baseline SAR interferometry are hence of great interest and can be successfully exploited for automatic phase unwrapping and high quality DEM reconstruction. This paper focuses on stacks of interferometric SAR data as they are used as input to multi-baseline framework for the purpose of height estimation and compare the results of such local and non- local covariance matrix estimation methods achieved by same data and on the same area, where the information of estimated covariance matrix is employed in the elevation mapping. In local methods such as Boxcar, a fixed-size window is considered for the central pixel which do not consider the statistical homogeneity of neighboring pixels, so this method in non-homogenous area leads the results to lower accuracy. In non-local methods the procedure is centered around the idea of checking the pixels to find the same statistical distribution as the investigated pixel, which is realized by Wishart similarity function. In this case, all the similar pixels are then used to estimate the complex covariance matrix of the reference pixel. In the context of non-local filtering, one of the most efficient method is NLSAR approach, which has been considered in our framework. More precisely, NLSAR uses samples in a search window and assigns each pixel a weight based on its similarity to the target pixel. The idea of NLSAR approach is to find, within a search window, for each pixel p to be filtered non-local neighbors t that share statistical similarity with the considered pixel. A pixel t is assumed to come from the same statistical population as the considered pixel p, if the patches or local neighbors that surround the two pixels are similar. The similarity for two pixels is defined as a likelihood-ratio test based on the hypothesis that their two Wishart distributed covariance matrices are equal. The main peculiarity that made the NLSAR approach extremely popular is its ability of filtering noise while preserving structures and discontinuities. The stadium height estimated by using the covariance matrix estimated with Boxcar and NLSAR methods respectivey is equal to 41.100 and 42.5400 meter which in the comparison with the actual height extracted from AfriSAR mission, indicates higher accuracy for the results of NLSAR method. The task of covariance matrix estimation is so challenging for complex area such as the area used for this paper which contains the Angondjé stadium in Mondah, Gabon, that represented a complex scenario because of the occurrence of layover, a phenomenon that gives rise to the interference within the same pixel of ground scattering mechanisms located of different height with same slant range distance. we use PCA (Principal Component Analysis) to decompose principal scattering mechanisms. Then , the powerful statistics Maximum Likelihood (ML) technique is used to properly compute the elevation information of the principal components by the available information of covariance matrix. From this covariance matrix, both amplitude and interferometric phase values extracted which are then used for height estimation.
منابع مشابه
Maximum Likelihood Multi-Baseline SAR Interferometry
We propose a technique to provide interferometry by combining multiple images of the same area. This technique exploits all the images jointly and performs an optimal spectral shift pre-processing to remove most of the decorrelation for distributed targets. It’s applications are mainly for DEM generation at centimetric accuracy, and for differential interferometry. The major requirement is that...
متن کاملMaximum Likelihood Estimation For SAR Interferometry
Synthetic Aperture Radar (SAR) interferometry (InSAR) uses phase differences between overlapping SAR images to estimate terrain height and terrain height changes. In addition, the coherence magnitude between the images is often used as a measure of the quality of the data and the processing. By modeling the SAR image data as independent circular Gaussian random variates, we develop the maximum ...
متن کاملinvestigation of single-user and multi-user detection methods in mc-cdma systems and comparison of their performances
در این پایان نامه به بررسی روش های آشکارسازی در سیستم های mc-cdma می پردازیم. با توجه به ماهیت آشکارسازی در این سیستم ها، تکنیک های آشکارسازی را می توان به دو دسته ی اصلی تقسیم نمود: آشکارسازی سیگنال ارسالی یک کاربر مطلوب بدون در نظر گرفتن اطلاعاتی در مورد سایر کاربران تداخل کننده که از آن ها به عنوان آشکارساز های تک کاربره یاد می شود و همچنین آشکارسازی سیگنال ارسالی همه ی کاربران فعال موجود در...
THE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)
Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes. Small area estimation is needed in obtaining information on a small area, such as sub-district or village. Generally, in some cases, small area estimation uses parametric modeling. But in fact, a lot of models have no linear relationship between the small area average and the covariat...
متن کاملHyperbolic Cosine Log-Logistic Distribution and Estimation of Its Parameters by Using Maximum Likelihood Bayesian and Bootstrap Methods
In this paper, a new probability distribution, based on the family of hyperbolic cosine distributions is proposed and its various statistical and reliability characteristics are investigated. The new category of HCF distributions is obtained by combining a baseline F distribution with the hyperbolic cosine function. Based on the base log-logistics distribution, we introduce a new di...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 10 شماره 1
صفحات 83- 95
تاریخ انتشار 2020-09
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023